МЕСТО ДЛЯ РЕКЛАМЫ I
Все справочники Предисловие
Глава 5
Асинхронные микромашины автоматических устройств
  1. Устройство и основные конструктивные типы асинхронных исполнительных двигателей
  2. Исполнительный двигатель с амплитудным управлением
  3. Исполнительный двигатель с фазовым управлением
  4. Исполнительный двигатель с амплитудно-фазовым управлением (конденсаторная схема)
  5. Быстродействие исполнительных двигателей и их сравнение при различных способах управления
  6. Асинхронный тахогенератор
  7. Устройство и принцип действия вращающихся трансформаторов
  8. Синусно-косинусный вращающийся трансформатор
  9. Линейный вращающийся трансформатор
  10. Вращающийся трансформатор-построитель
  11. Принцип действия системы синхронной связи и устройство сельсинов
  12. Трансформаторный режим работы однофазных сельсинов
  13. Индикаторный режим работы однофазных сельсинов
  14. Дифференциальные сельсины
  15. Магнесины
  16. Трехфазные сельсины
  17. Использование вращающихся трансформаторов в системе дистанционной передачи угла
Глава 6
Синхронные машины
  1. Назначение и принцип действия синхронной машины
  2. Устройство синхронной машины
  3. Особенности конструкции синхронных машин большой мощности
  4. Работа генератора при холостом ходе
  5. Работа генератора под нагрузкой
  6. Векторные диаграммы генератора
  7. Внешние и регулировочные характеристики генератора
  8. Определение индуктивных сопротивлений синхронной машины
  9. Параллельная работа синхронного генератора с сетью
  10. Режимы работы синхронного генератора при параллельной работе с сетью
  11. Мощность и электромагнитный момент синхронной машины
  12. Статическая устойчивость
  13. Синхронный двигатель
  14. Пуск синхронного двигателя
  15. Регулирование частоты вращения синхронных двигателей. Вентильный двигатель
  16. Синхронный компенсатор
  17. Понятие о переходных процессах в синхронных машинах
  18. Несимметричные режимы работы синхронных генераторов
  19. Особенности работы синхронного генератора на выпрямительную нагрузку
  20. Сверхпроводниковые синхронные генераторы
  21. Однофазная синхронная машина
Глава 9
Глава 10
Нагревание и режимы работы электрических машин
  1. Нагревание электрических машин
  2. Режимы нагрузки электрических машин
Заключение Список литературы

§ 6.11.  МОЩНОСТЬ  И  ЭЛЕКТРОМАГНИТНЫЙ  МОМЕНТ СИНХРОННОЙ МАШИНЫ

Активная мощность. Чтобы установить, как зависит активная мощность Р синхронной машины от угла нагрузки θ, рассмотрим упрощенные векторные диаграммы, построенные при
Ra = 0. Из диаграммы, приведенной на рис. 6.37, а для неявнополюсной машины, можно установить, что общая сторона треугольников ОАВ и АСВ АВ = ОA sin θ = AC cos φ или с учетом модулей соответствующих векторов

(6.30)

Е0 sin θ = Ia Xсн cos φ.

Рис. 6.37. Упрощенные векторные диаграммы неявнополюсной и явнополюсной синхронной машины

Следовательно, активная мощность синхронной машины

(6.31)

Р = mUIа cos φ = (mUЕ0/Xсн)sinθ.

Векторная диаграмма для явнополюсной машины приведена на рис. 6.37,б. Так как φ = ψ - 0, то активная мощность

P = mUIа cos(ψ - 0) =

= mU (Ia sin ψ sin θ + Iа cos ψ cos θ) =

(6.32)

= mU (Id sin θ + Iq cos θ).

Чтобы определить токи Id и Iq , спроектируем модули векторов ЭДС É0, напряжения Ú, падений напряжений - d Xd и —a Xq на оси — параллельную и перпендикулярную вектору É0 (рис. 6.37,б). Тогда Е0 = U cos θ + Id Xd ; U sin θ = Iq Xq , откуда

(6.33)

Id = (Е0 - Ucosθ)/Xd ; Iq = U sin θ/Xq .

Подставляя значение Id и Iq в (6.32), получаем

P = mU{[(Е0 - U cos θ)/Xd ] sin θ + (U sinθ /Xq ) cos θ},

или, используя формулу sin 2θ = 2sin θ cos θ,
(3.34)
P = (mUE0/Xd ) sin θ + (mU2/2) (1/Xq - 1/Xd ) sin 2θ.

Электромагнитный момент. В синхронных машинах большой и средней мощности потери мощности в обмотке якоря ΔРа эл = mIa2Ra малы по сравнению с электрической мощностью Р, отдаваемой (в генераторе) или потребляемой (в двигателе) обмоткой якоря. Следовательно, если пренебречь величиной ΔРа эл, то можно считать, что электромагнитная мощность машины Рэм = Р. Электромагнитный момент пропорционален мощности Рэм, поэтому для неявнополюсной и явнополюсной машин соответственно

(3.35)
М = Рэм1 = [mUE0/(ω1Xсн )] sin θ;
(3.36)
М = Рэм 1 = [mUE0 /(ω1 Xd )] sinθ + [mU2/(2ω1 )] (1/Xq - 1/Xd ) sin 2θ.
Рис. 6.38. Угловые характеристики   явнополюсной   и   неявнополюсной машин

Рис. 6.39. Характер взаимодействия
потоков  Фв и  ΣФ  в  синхронной

машине

При неявнополюсной машине зависимость М = f(θ) представляет собой синусоиду, симметричную относительно осей координат (рис. 6.38, кривая 1). При явнополюсной машине из-за неодинаковой магнитной проводимости по различным осям d ≠ Xq ) возникает реактивный момент

(6.37)
Мр = [mU2 /(2ω1 )] (1/Хq - 1/Хd ) sin 2θ

Он появляется в результате стремления ротора ориентироваться по оси результирующего поля, что несколько искажает синусоидальную зависимость М = f(θ) (кривая 2). Реактивный момент возникает даже при отсутствии тока возбуждения (когда Е0 = 0); он пропорционален sin 2θ (кривая 3). Так как электромагнитная мощность Рэм пропорциональна моменту, то приведенные на рис. 6.38 характеристики в другом масштабе представляют собой зависимости Рэм = f (θ) или при принятом предположении (ΔРа эл = 0) — зависимости Р = f (θ). Кривые М = f (θ) и Рэм = f (θ) называют угловыми характеристиками.

Физически полученная форма кривой М =f (θ) обусловлена тем, что потоки Фв и ΣФ сдвинуты между собой на тот же угол θ, на который сдвинуты векторы É0 и Ú (векторы Фв и ΣФ опережают É0 и Ú на 90°). Поэтому если угол θ = 0 (холостой ход), то между ротором и статором существуют только силы притяжения f, направленные радиально (рис. 6.39, а),и электромагнитный момент равен нулю.

При θ > 0 (генераторный режим) ось потока возбуждения Фв (полюсов ротора) под действием вращающего момента Мвн опережает ось суммарного потока ΣФ на угол θ (рис. 6.39, б), вследствие чего электромагнитные силы, возникающие между ротором и статором, образуют тангенциальные составляющие, которые создают электромагнитный тормозной момент М. Максимум момента соответствует значению θ = 90°, когда ось полюсов ротора расположена между осями «полюсов» суммарного потока ΣФ. При θ < 0 (двигательный режим) ось потока возбуждения под действием тормозного момента нагрузки Мвн отстает от оси суммарного потока (рис. 6.39, в), вследствие чего тангенциальные составляющие электромагнитных сил, возникающие между ротором и статором, создают электромагнитный вращающий момент М.

МЕСТО ДЛЯ РЕКЛАМЫ II