МЕСТО ДЛЯ РЕКЛАМЫ I
Все справочники Предисловие
Глава 5
Асинхронные микромашины автоматических устройств
  1. Устройство и основные конструктивные типы асинхронных исполнительных двигателей
  2. Исполнительный двигатель с амплитудным управлением
  3. Исполнительный двигатель с фазовым управлением
  4. Исполнительный двигатель с амплитудно-фазовым управлением (конденсаторная схема)
  5. Быстродействие исполнительных двигателей и их сравнение при различных способах управления
  6. Асинхронный тахогенератор
  7. Устройство и принцип действия вращающихся трансформаторов
  8. Синусно-косинусный вращающийся трансформатор
  9. Линейный вращающийся трансформатор
  10. Вращающийся трансформатор-построитель
  11. Принцип действия системы синхронной связи и устройство сельсинов
  12. Трансформаторный режим работы однофазных сельсинов
  13. Индикаторный режим работы однофазных сельсинов
  14. Дифференциальные сельсины
  15. Магнесины
  16. Трехфазные сельсины
  17. Использование вращающихся трансформаторов в системе дистанционной передачи угла
Глава 6
Синхронные машины
  1. Назначение и принцип действия синхронной машины
  2. Устройство синхронной машины
  3. Особенности конструкции синхронных машин большой мощности
  4. Работа генератора при холостом ходе
  5. Работа генератора под нагрузкой
  6. Векторные диаграммы генератора
  7. Внешние и регулировочные характеристики генератора
  8. Определение индуктивных сопротивлений синхронной машины
  9. Параллельная работа синхронного генератора с сетью
  10. Режимы работы синхронного генератора при параллельной работе с сетью
  11. Мощность и электромагнитный момент синхронной машины
  12. Статическая устойчивость
  13. Синхронный двигатель
  14. Пуск синхронного двигателя
  15. Регулирование частоты вращения синхронных двигателей. Вентильный двигатель
  16. Синхронный компенсатор
  17. Понятие о переходных процессах в синхронных машинах
  18. Несимметричные режимы работы синхронных генераторов
  19. Особенности работы синхронного генератора на выпрямительную нагрузку
  20. Сверхпроводниковые синхронные генераторы
  21. Однофазная синхронная машина
Глава 9
Глава 10
Нагревание и режимы работы электрических машин
  1. Нагревание электрических машин
  2. Режимы нагрузки электрических машин
Заключение Список литературы

§ 5.8. СИНУСНО-КОСИНУСНЫЙ ВРАЩАЮЩИЙСЯ ТРАНСФОРМАТОР

Выходные напряжения. На статоре этого трансформатора расположены обмотки В и К, а на роторе — обмотки S и С (см. рис. 5.24). При холостом ходе напряжения на синусной S и косинусной С обмотках ротора равны соответствующим ЭДС:

(5.49)
US0 = ES0 = kЕв sin θ; UC0 = EC0 = kЕв cos θ,
т.е. изменяются по требуемым законам. Аналогичный режим работы возникает в случае, когда нагрузка синуснокосинусного
Рис.   5.26.   Векторная   диаграмма МДС при  подключении нагрузки  к  синусной обмотке
трансформатора представляет собой электронное устройство с большим входным сопротивлением.

Если к синусной обмотке S подключить некоторую нагрузку Zн S , то по обмотке пойдет ток

(5.50)

ÍS = ÉS /(ZS + ZнS ),

где ZS — сопротивление обмотки S, которое считаем постоянным.

Ток IS создает МДС ротора FS . Как видно из рис. 5.26, ось этой МДС совпадает с осью фазы S , поэтому ее можно представить в виде суммы двух составляющих: продольной FSd = FS sin θ и поперечной FSq = FS cos θ. Продольная составляющая FSd создает в обмотке возбуждения В компенсирующий ток, МДС которого Fв , так же как и в двухобмоточном трансформаторе, компенсирует действие FSd .

Результирующий продольный поток Фd индуцирует ЭДС в обмотке S

(5.51)

ESd = kEв sinθ.

Поперечная составляющая FSq создает во вращающемся трансформаторе поперечный поток Фq . Относительно поперечного потока Фq обмотка S является косинусной и, следовательно, в ней индуцируется ЭДС

(5.52)

ESq = 4,44f1 w2 ko62 Фqm cos θ = CFS cos2 θ,

где С — постоянная.

Таким образом, при нагрузке в синусной обмотке кроме требуемой ЭДС, пропорциональной синусу угла поворота θ, индуцируется ЭДС, пропорциональная току нагрузки и квадрату косинуса θ. Эта добавочная составляющая ЭДС вызывает появление погрешностей. Аналогично в косинусной обмотке при нагрузке поперечным потоком Фq индуцируется добавочная ЭДС ECq , пропорциональная току нагрузки и квадрату синуса θ, которая также вызывает появление погрешностей.

Для устранения погрешности вращающегося трансформатора, обусловленной поперечным потоком Фq , применяют так называемое симметрирование трансформатора, т. е. компенсацию поперечного потока ротора. Существует два способа симметрирования: вторичное (со стороны ротора) и первичное (со стороны статора).

Рис. 5.27. Схема синусно-косинусного трансформатора со вторичным симметрированием и диаграмма МДС, создаваемых обмотками ротора

Вторичное симметрирование. Для уменьшения погрешности выходного напряжения, снимаемого с синусной обмотки, подключают к косинусной обмотке сопротивление ZнС (рис. 5.27, а). В этом случае ток, проходящий по обмотке С, создает МДС FС , которую можно представить, так же как и МДС FS , в виде векторной суммы двух составляющих (рис. 5.27,б): продольной FСd = FС cos θ и поперечной FCq = FС sin θ. Продольная составляющая FCd совпадает по направлению с FSd , a поперечная составляющая FCq направлена против FSq . При FCq = FSq поперечный поток Фq = 0. Следовательно, не возникает и погрешность, обусловленная этим потоком. Сопротивление ZнС, при котором обеспечено полное симметрирование, можно определить из условия

(5.53)

FS cos θ = FC sin θ

или с учетом значений FS и FC
(5.54)
ZS + ZнS = ZC + ZнC ,
т. е. полное симметрирование наблюдается при равенстве комплексных сопротивлений в цепи обмоток S и С ротора, т. е. их активных и реактивных составляющих. При вторичном симметрировании компенсируются МДС по поперечной оси; кроме того, ток Iв в обмотке возбуждения поворотного трансформатора не зависит от угла поворота, так как в формулу для результирующей продольной составляющей МДС ротора 2d = F́Sd + F́Cd (определяющей силу тока Iв) не входит какаялибо функция угла θ:
2d = F́S sin θ + F́C cos θ =
0,9kÉв w2 kоб2 sin θ
ZS + ZнC
sin θ +
0,9kÉв w2 kоб2 cos θ
ZC + ZнC
cos θ =
0,9kw2 kоб2
Z2 + Zн
Éв ,
где Z2 = ZS = ZC ; Zн = ZнS = ZнC .

В результате уменьшается погрешность поворотного трансформатора.

Рассмотренный метод симметрирования практически применим только при постоянном сопротивлении нагрузки, что является его недостатком.

Первичное симметрирование. Для уменьшения погрешности выходного напряжения снимаемого, например, с обмотки S (рис. 5.28, а), компенсационную обмотку К статора замыкают на какое-либо малое сопротивление ZK или накоротко. В этом случае по поперечной оси вращающегося трансформатора действует результирующая МДС

(5.55)

Fq = FSq + FK ,

где FK — МДС, создаваемая компенсационной обмоткой.

Так как обмотка К относительно поперечного потока Фq представляет собой замкнутую накоротко вторичную обмотку трансформатора, то ее МДС K направлена против МДС Sq «первичной» обмотки, и результирующая МДС Fq , так   же   как   и   в   трансформаторе   тока, значительно

Рис, 5.28. Схемы синусно-косинусных вращающихся трансформаторов

меньше МДС FSq . Поэтому поперечный поток Фq и вызванная им погрешность резко уменьшаются. При изменении нагрузки, подключенной к обмотке ротора, МДС FK изменяется примерно пропорционально МДС FSq , вследствие чего степень компенсации поперечного потока остается практически неизменной. Это является достоинством данного метода симметрирования. Однако при изменении угла поворота ротора θ изменяется ток Iв в обмотке возбуждения и при заданном напряжении Úв изменяется ЭДС Éв . В результате появляется дополнительная погрешность в значении выходных напряжений ÚS и ÚC на зажимах синусной и косинусной обмоток. Поэтому во вращающихся трансформаторах обычно применяют одновременно первичное и вторичное симметрирование (рис. 5.28,б). Рассмотренные методы компенсации поперечного потока Фq позволяют использовать в качестве выходной как синусную, так и косинусную обмотки. Поэтому вращающийся трансформатор, включенный по схеме, изображенной на рис. 5.28,б, называют синусно-косинусным.
МЕСТО ДЛЯ РЕКЛАМЫ II